The Genetic Code

Index to this page
The genetic code consists of 64 triplets of nucleotides. These triplets are called codons.With three exceptions, each codon encodes for one of the 20 amino acids used in the synthesis of proteins. That produces some redundancy in the code: most of the amino acids being encoded by more than one codon.

One codon, AUG serves two related functions:

The genetic code can be expressed as either RNA codons or DNA codons. RNA codons occur in messenger RNA (mRNA) and are the codons that are actually "read" during the synthesis of polypeptides (the process called translation). But each mRNA molecule acquires its sequence of nucleotides by transcription from the corresponding gene. Because DNA sequencing has become so rapid and because most genes are now being discovered at the level of DNA before they are discovered as mRNA or as a protein product, it is extremely useful to have a table of codons expressed as DNA. So here are both.

Note that for each table, the left-hand column gives the first nucleotide of the codon, the 4 middle columns give the second nucleotide, and the last column gives the third nucleotide.

The RNA Codons

Second nucleotide
UCAG
U UUU Phenylalanine (Phe)UCU Serine (Ser)UAU Tyrosine (Tyr)UGU Cysteine (Cys)U
UUC PheUCC SerUAC TyrUGC CysC
UUA Leucine (Leu)UCA Ser UAA STOPUGA STOPA
UUG LeuUCG Ser UAG STOPUGG Tryptophan (Trp)G
C CUU Leucine (Leu)CCU Proline (Pro)CAU Histidine (His) CGU Arginine (Arg)U
CUC LeuCCC ProCAC HisCGC Arg C
CUA LeuCCA ProCAA Glutamine (Gln)CGA Arg A
CUG LeuCCG ProCAG GlnCGG Arg G
A AUU Isoleucine (Ile)ACU Threonine (Thr)AAU Asparagine (Asn)AGU Serine (Ser)U
AUC IleACC ThrAAC AsnAGC Ser C
AUA IleACA Thr AAA Lysine (Lys)AGA Arginine (Arg)A
AUG Methionine (Met) or STARTACG ThrAAG LysAGG Arg G
G GUU Valine ValGCU Alanine (Ala)GAU Aspartic acid (Asp)GGU Glycine (Gly)U
GUC (Val)GCC AlaGAC AspGGC GlyC
GUA ValGCA AlaGAA Glutamic acid (Glu)GGA GlyA
GUG ValGCG AlaGAG GluGGG GlyG


The DNA Codons

These are the codons as they are read on the sense (5' to 3') strand of DNA. Except that the nucleotide thymidine (T) is found in place of uridine (U), they read the same as RNA codons. However, mRNA is actually synthesized using the antisense strand of DNA (3' to 5') as the template. [Discussion]

This table could well be called the Rosetta Stone of life.

The Genetic Code (DNA)

TTTPheTCTSerTATTyrTGTCys
TTCPheTCCSerTACTyrTGCCys
TTALeuTCASerTAASTOPTGASTOP
TTGLeuTCGSerTAGSTOPTGGTrp
CTTLeuCCTProCATHisCGTArg
CTCLeuCCCProCACHisCGCArg
CTALeuCCAProCAAGlnCGAArg
CTGLeuCCGProCAGGlnCGGArg
ATTIleACTThrAATAsnAGTSer
ATCIleACCThrAACAsnAGCSer
ATAIleACAThrAAALysAGAArg
ATGMet*ACGThrAAGLysAGGArg
GTTValGCTAlaGATAspGGTGly
GTCValGCCAlaGACAspGGCGly
GTAValGCAAlaGAAGluGGAGly
GTGValGCGAlaGAGGluGGGGly
*When within gene; at beginning of gene, ATG signals where translation of the RNA will begin.

Codon Bias

All but two of the amino acids (Met and Trp) can be encoded by from 2 to 6 different codons. However, the genome of most organisms reveals that certain codons are preferred over others. In humans, for example, alanine is encoded by GCC four times as often as by GCG. This probably reflects a greater translation efficiency by the translation apparatus (e.g., ribosomes) for certain codons over their synonyms. [More]

Exceptions to the Code

The genetic code is almost universal. The same codons are assigned to the same amino acids and to the same START and STOP signals in the vast majority of genes in animals, plants, and microorganisms. However, some exceptions have been found. Most of these involve assigning one or two of the three STOP codons to an amino acid instead.

Mitochondrial genes

When mitochondrial mRNA from animals or microorganisms (but not from plants) is placed in a test tube with the cytosolic protein-synthesizing machinery (amino acids, enzymes, tRNAs, ribosomes) it fails to be translated into a protein.

The reason: these mitochondria use UGA to encode tryptophan (Trp) rather than as a chain terminator. When translated by cytosolic machinery, synthesis stops where Trp should have been inserted.

In addition, most

Plant mitochondria use the universal code, and this has permitted angiosperms to transfer mitochondrial genes to their nucleus with great ease.
Link to discussion of mitochondrial genes.

Nuclear genes

Violations of the universal code are far rarer for nuclear genes.

A few unicellular eukaryotes, notably among the ciliates, have been found that use one or two or even all three of their STOP codons for amino acids. Only those STOP codons occurring close to the poly(A) tail trigger chain termination.

Nonstandard Amino Acids

The vast majority of proteins are assembled from the 20 amino acids listed above even though some of these may be chemically altered, e.g. by phosphorylation, at a later time.

However, two cases have been found where an amino acid that is not one of the standard 20 is inserted by a tRNA into the growing polypeptide.
Welcome&Next Search

7 December 2016